Mathematics and Politics

The Quantification of Power

Stanley Chang Department of Mathematics Wellesley College

The Institute of Mathematics and Democracy November 3, 2020

Suppose that there are 7 voters for a particular election, voting between three candidates ${\sf A}$, ${\sf B}$, ${\sf C}$.

- 1. Unanimous: winner needs all votes A A A A A A A A
- 2. Majority: winner needs 4 votes A A A A B B C
- 3. Quota: winner needs 5 votes A A A A A B C

How can we numerically represent these particular voting schemes?

- 1. Unanimous: V(7||1, 1, 1, 1, 1, 1) A A A A A A A A
- 2. Majority: V(4||1, 1, 1, 1, 1, 1, 1) A A A A B B C
- 3. Quota: V(5||1,1,1,1,1,1,1) A A A A A B C

Example

United Nations Security Council has

- 5 permanent members (U.S., China, England, France, Russia).
- 10 other countries that rotate (currently Belgium, Dominican Republic, Estonia, Germany, Indonesia, Niger, Saint Vincent and the Grenadines, South Africa, Tunisia, Vietnam).

Example

- A measure passes if 9 members vote for it.
- $\circ~$ Any of the 5 permanent members have veto power.
- o Is this a weighted voting system?
- Yes! It can be represented as

V(49||9,9,9,9,9,1,1,1,1,1,1,1,1,1,1)

• Or as

V(39||7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1)

• We say these systems are *isomorphic*.

Example

Any two unanimity methods are isomorphic because all votes are required, regardless of their weights.

Scary example

- In the Electoral College, each state has electoral votes that count toward the presidential election.
- $\circ~$ We can think of this as having 51 voters with different weights.
- So California is a voter with weight 55, and Massachusetts is a voter with weight 11.
- $\circ~$ For a candidate to win the election, 270 votes are needed.
- $\circ~$ This can be encoded with the notation

V(270||55, 38, 29, 29, 20, 20, 18, 16, ..., 4, 3, 3, 3, 3, 3, 3, 3, 3, 3)

Example

Passing laws in the U.S. is a complicated thing...

In short, a proposed legislation has to have the support of

- a majority of the House,
- a majority of the Senate,
- and the President.
- If the President does not support it, he can veto it...

Example

- \circ ... but if the legislation has the support of 2/3 of the House and the Senate, then he cannot veto it and the legislation passes.
- $\circ~$ Vice-president plays a role since he can break ties in the Senate.
- o Is this a weighted voting system?

Proposition

No.

Let's look at a couple of interesting examples...

Example

• Suppose a parliament has representatives from three parties:

- A with 49 members,
- B with 49 members,
- D with 2 members.
- $\,\circ\,$ Simple majority (≥ 51 votes) wins the vote.
- So this is a V(51||49, 49, 2) weighted voting system.
- But D is not disadvantaged!
- In fact V(51||49,49,2) and V(2||1,1,1) are isomorphic.

Example

Something like the previous example happened in the Senate in 2001:

- In 2001, U.S. Senate had 50 Republicans and 50 Democrats.
- Jim Jeffords, a Republican, became an independent in 2001.
- Vice-president was a Republican, so the division in the Senate became 50-50-1.

Jim Jeffords (1934-2014)

- $\circ\,$ In the scheme V(51||50,50,1), neither the Republicans nor the Democrats could accomplish anything unless Jeffords joined them.
- The scheme is actually isomorphic to V(2||1,1,1).

Example

- In the scheme V(51||50, 50, 1), voter D has only one vote but is just as important as A and B.
- Suppose a parliament has representatives from four parties:
 - A with 26 members,
 - B with 26 members,
 - C with 26 members,
 - D with 22 members.
- $\circ~$ Simple majority V(51||26,26,26,22) will win.
- $\circ~$ What is the situation with D ?
- $\{A\}$ and $\{A, D\}$ yield the same outcome. $\{A, B, D\}$ and $\{A, B\}$ yield the same outcome.
- Voter D has nothing!

How much power does each voter have?

- In V(51||50, 50, 1), voter D had less than 1% of the votes, but it had the same influence as the other parties. You cannot say that A has 50% more power than D.
- $\circ~$ In V(51||26,26,26,22), voter D had 22% of the votes and had no influence at all.
- $\circ~$ Can we somehow quantify this influence, or voting power?
- Yes! Using power indices.

Winning and Losing Coalitions

- Consider V(51||26, 26, 26, 22).
- A with 26 votes,
- B with 26 votes,
- C with 26 votes,
- D with 22 votes.

If A and B banded together, they would have 52 votes, and would decide the election. Then $\{A, B\}$ is called a *winning coalition*. Similarly $\{A, B, D\}$ is a winning coalition, but $\{C, D\}$ is a losing coalition.

- A coalition is any subset of $\{A, B, C, D\}$.
- A coalition is a *winning coalition* if, when everyone in it votes for a candidate, that candidate wins.
- A coalition that is not winning is a *losing coalition*.

Critical Voters

Example

 $\circ~$ Suppose there are four voters: A ,B ,C ,D and the voting scheme is

 $V(14||10^{A}, 8^{B}, 5^{C}, 2^{D})$

- For example, the coalition {A, B, D} is winning since the total of their votes is 10 + 8 + 2 = 20 ≥ 14.
- The coalition $\{C, D\}$ is not winning since the total of their votes is 5+2=7<14.
- We say that a voter V in a winning coalition is *critical* if its remove results in a losing coalition.
- For $\{A, B, D\}$, voters A and B are critical but D is not.

Computing the Banzhaf power index

Example

 $V(14||10^{A}, 8^{B}, 5^{C}, 2^{D})$

Coalition	# of votes	Winning?	Critical voters
{ }	0	No	n/a
{ A }	10	No	n/a
{ B }	8	No	n/a
{ <mark>C</mark> }	5	No	n/a
{ D }	2	No	n/a
{ A , B }	18	Yes	A,B
{ A , C }	15	Yes	А ,С
$\{A, D\}$	12	No	n/a
{ B , C }	13	No	n/a
{ B , D }	10	No	n/a
{ C , D }	7	No	n/a
{ A , B , C }	23	Yes	А
{ A , B , D }	20	Yes	A ,B
{ A , C , D }	17	Yes	А ,С
{ B , C , D }	15	Yes	B,C,D
$\{A, B, C, D\}$	25	Yes	None

Computing the Banzhaf power index

Example

- There are 12 instances when a voter is critical in $V(14||10^A, 8^B, 5^C, 2^D)$.
- Let c(P) be the number of times that P is critical.
- c(A) = 5, c(B) = 3, c(C) = 3, c(D) = 1. So

Power index of A =
$$\frac{5}{12} = 0.42 = 42\%$$

Power index of B = $\frac{3}{12} = 0.25 = 25\%$
Power index of C = $\frac{3}{12} = 0.25 = 25\%$
Power index of D = $\frac{1}{12} = 0.08 = 8\%$

- $\circ~$ Note that A has only two more votes than B, but is much more powerful.
- Even though B and C have different number of votes, they have the same power.

Computing the power index

 $\circ~$ Then the Banzhaf power index of a voter V is

 $\frac{\text{number of times voter } V \text{ is critical across all coalitions}}{\text{total number of times all voters are critical}}$

• This really computes the **probability** that a voter *V* will change the outcome of a vote if they join a coalition.

Back to the example of $V(51||50^A, 50^B, 1^D)$:

Winning coalitions: $\{A, B\}$, $\{A, D\}$, $\{B, D\}$, $\{A, B, D\}$. There are 6 critical cases, and each voter appears twice. So each has a power index of 2/6 = 33.3%.

In V(51||26, 26, 26, 22), voter D has power index 0%.

Example: European Economic Community

European Economic Community of 1958 (future EU)

- European Economic Community consisted of 6 countries:
 - France with 4 votes
 - Germany with 4 votes
 - Italy with 4 votes
 - Belgium with 2 votes
 - Netherlands with 2 votes
 - Luxembourg with 1 vote
- 12 votes are needed to win (quota).
- So we have a V(12||4, 4, 4, 2, 2, 1) weighted voting system.

European Economic Community

European Economic Community of 1958 (future EU)

Here are the winning coalitions:

Coalition	# of votes	Critical voters
{ <i>F</i> , <i>G</i> , <i>I</i> }	12	F,G,I
$\{F, G, I, B\}$	14	F,G,I
$\{F, G, I, N\}$	14	F,G,I
$\{F, G, I, L\}$	13	F,G,I
$\{F, G, B, N\}$	12	F,G,B,N
$\{F, I, B, N\}$	12	F,I,B,N
$\{G, I, B, N\}$	12	G,I,B,N
$\{F, G, I, B, N\}$	16	none
$\{F, G, I, B, L\}$	15	F,G,I
$\{F, G, I, N, L\}$	15	F,G,I
$\{F, G, B, N, L\}$	13	F,G,B,N
$\{F, I, B, N, L\}$	13	F,I,B,N
$\{G, I, B, N, L\}$	13	G,I,B,N
$\{F, G, I, B, N, L\}$	17	none

European Economic Community of 1958 (future EU)

V(12||4, 4, 4, 2, 2, 1)

- There are 42 instances when a voter is critical.
- France, Germany, and Italy are critical 10 times, Belgium and Netherlands 6 times, Luxembourg zero times. So

Power index of France	= 10/42 = 0.24 = 24%
Power index of Germany	= 10/42 = 0.24 = 24%
Power index of Italy	= 10/42 = 0.24 = 24%
Power index of Belgium	= 6/42 = 0.14 = 14%
Power index of Netherlands	= 6/42 = 0.14 = 14%
Power index of Luxembourg	= 0/42 = 0.00 = 0%

• Luxembourg has no power even though it has a vote; it is a *dummy* voter.

Example: UN Security Council

Banzhaf power index of the members of the United Nations Security Council

The Council has

- 5 permanent members (U.S., China, England, France, Russia).
- 10 other countries that rotate (currently Belgium, Dominican Republic, Estonia, Germany, Indonesia, Niger, Saint Vincent and the Grenadines, South Africa, Tunisia, Vietnam).

UN Security Council

- A measure passes if 9 members vote for it.
- $\circ~$ Any of the 5 permanent members have veto power.
- $\circ~$ This is a weighted voting system

V(39||7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1)

(this is one way of representing it).

- This makes sense since:
 - If five permanent members vote yes, this gives 35 votes, so to clear the quota of 39, four more are needed. This means 9 countries voted yes, as required.
 - If any of permanent members does not vote yes, then the most votes that can be gathered is $4 \cdot 7 + 10 \cdot 1 = 38$. This means that permanent members have veto power.

Banzhaf index of the UN Security Council

 Any winning coalition must have all five permanent members in it and at least four more non-permanent members.

{US, UK, Ch, Ru, Fr, DR, SVG, Es, Tun}

So the winning coalitions looks like

{5 permanent, 4 non-permanent}

{5 permanent, 5 non-permanent}

{5 permanent, 6 non-permanent}

{5 permanent, 7 non-permanent}

{5 permanent, 8 non-permanent}

{5 permanent, 9 non-permanent}

{5 permanent, 10 non-permanent}

There are

210 + 252 + 210 + 120 + 45 + 10 + 1 = 848

winning coalitions.

Banzhaf index of the UN Security Council

Who is critical in V(39||7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1)?

{US, UK, Ch, Ru, Fr, DR, SVG, Es, Tun} {US, UK, Ch, Ru, Fr, Ge, DR, SVG, Es, Tun}

- \circ Thus
 - . Each of the five permanent members is critical 848 times, and
 - Each of the ten non-permanent members is critical 84 times.
- $\circ~$ So the total number of times that some voter is critical is

$$5 \cdot 848 + 10 \cdot 84 = 5080$$

Banzhaf index of each permanent member = $\frac{848}{5080} = 0.1669 = 16.69\%$ Banzhaf index of each non-permanent member = $\frac{84}{5080} = 0.165 = 1.65\%$

Permanent members have about 10 times as much power!